Dynamic Acoustic Gating for On-Demand Ion Selectivity in Nanoporous Graphene Desalination Membranes

Riddhi Sonekar, Ritvik Chakka

Synopsis

This paper proposes acoustic gating of graphene nanoporous membranes as an alter-native method for desalination and reversible ion selectivity through sound acoustic waves. This paper highlights static, acoustic and dynamic gating, various mech-anisms of ion exclusion, key challenges and engineering solutions and about the future prospects.

Abstract: Graphene-based nanoporous membranes have the ability to transport water extremely quickly and can filter out substances at the atomic level, which makes them very promising for future water desalination technologies. However, most existing methods use fixed pore structures and cannot adjust salt passage in real time or reverse the process as needed. In this work, we introduce the idea of "acoustic gating," which uses sound waves to control the selectivity of graphene nanopores, allowing for adjustable performance in desalination. We look at the basics of creating graphene membranes, discuss how acoustic signals can influence fluid movement in nanoscale systems, review recent progress in using graphene for desalination, and highlight important challenges, possible engineering solutions, and future opportunities for desalination systems that can respond to different conditions on demand.pubs.acs+6

Keywords: Graphene nanoporous membranes, Acoustic gating, Surface acoustic waves (SAW), Dynamic ion selectivity, Desalination, Nanofluidics, Water purification, Stimuli- responsive membranes, Nanoacoustics, Flux-selectivity trade-off

Date of Submission: 13-10-2025 Date of Acceptance: 27-10-2025

I. Introduction

1.1 Need for Responsive Desalination Membranes

The increasing worldwide need for fresh water and the high energy use of traditional desalination processes have led to the creation of advanced membranes that offer both high water flow rates and strong salt removal. Materials like graphene and its related compounds, which are extremely thin and have strong structural properties, have shown in laboratory tests to significantly improve water flow and salt blocking compared to standard polymer-based membranes. This is due to their carefully controlled nanopores and the ability to adjust their surface properties.nature+3

1.2 Static Versus Dynamic Gating

Current graphene-based desalination membranes, although highly precise, function as passive structures. Their pore size, chemical composition, and selectivity are determined during the fabrication process and cannot be modified in response to changes in water chemistry, fouling, or evolving performance requirements. In contrast, dynamic gating, an approach inspired by biological ion channels aims to enable on-demand and reversible control of transport properties within mem- branes. Recent studies have explored dynamic gating through methods such as electric fields, chemical modulation, and, in the case of non-Newtonian fluids, mechanical or thermal stimuli. Nevertheless, these methods typically fail to achieve the necessary robustness and spatial precision required for single-atom membrane systems.pubs.rsc+3

1.3 Rationale for Acoustic Gating

Acoustic fields have been widely applied at larger scales in microfluidics for tasks such as particle manipulation, cleaning, and preventing fouling. Recent developments in nano acoustics and surface acoustic wave (SAW) technology indicate that these techniques can be adapted to control nanofluidic processes and even manage structures with sub-nanometer-sized pores. In this work, we present a framework for utilising acoustic waves to regulate the movement of ions and water through graphene nanopores with atomic precision, enabling the creation

DOI: 10.9790/ 264X-1105024548 www.iosrjournals.org 45 | Page

of the world's first "acoustically switchable" desalination system.

II. Graphene Nanoporous Membrane Technologies: State of the Art

2.1 Fabrication and Mechanisms of Ion Exclusion

In recent years, new techniques have been developed to create precisely controlled nanopores in graphene. These methods include ion irradiation, oxidative etching, plasma treatment, and stopping carbon vapor deposition growth. The nanopores made by these methods range in size from 0.3 to 1.2 nanometers. These tiny holes function like filters, letting water pass through while blocking salt ions that are attached to water molecules. Studies have shown that these filters can block more than 99% of sodium chloride and allow water to flow through at rates higher than 10 liters per unit of time.nature+3

2.2 Comparative Membrane Performance

Below is a comparative table of recent graphene desalination benchmarks:

Membrane Type	Pore Size (mm)	NaCl Rejection (%)	Water <u>Flux(</u> L m ⁻ 2 <i>h</i> ⁻ 1 <i>bar</i> ⁻ 1	Dynamic Gating
Nanoporous	0.8-1.2	99+	2-10	No
monolayer				
graphene				
Graphene–MoS	1.0	97-99	15+	No
composite				
Oxidation-	0.6-0.8	99+	5-8	Partial
controlled				
graphene				
Graphene oxide	n/a (stacked)	92-98	1-3	No
(GO) laminate				
Electrochemical-	0.7(var)	95-98 (tunable)	1-5(tunable)	Voltage
gated hybrid				
Non-Newtonian	More than 1.0	Up to 99	5-14 (acoustically modulated)	Acoustic
fluid gating				
(analogy)				

2.3 Dynamic and Stimuli-Responsive Developments

There is increasing attention on membranes that can alter their selectivity when exposed to electric fields, temperature changes, or mechanical stress. Despite this, there is still no existing research that successfully uses acoustic signals to control ion selectivity at the level of real graphene nanopores, which are commonly used in desalination processes. Advances in acoustically adjustable microstructures for preventing fouling in water treatment systems, as well as acoustic control of nanofluidic flow, offer a solid basis for future developments.pmc.ncbi.nlm.nih+7

III. Principle and Mechanism of Acoustic Gating

3.1 Acoustic Manipulation at the Nanoscale

Surface acoustic waves (SAW), produced on piezoelectric materials, transfer oscillating mechanical energy to thin layers on top of them, which can cause very small-scale deformations or changes in pressure. When these waves are used in setups where they interact with fluids, they can change the characteristics of the boundary layer, generate nanoscale forces, and even alter the structure of water molecules surrounding other molecules.

3.2 Acoustic Gating in Graphene Membranes

We suggest combining monolayer or few-layer graphene membranes with piezoelectric actuators, which enable accurate and adjustable acoustic stimulation within the MHz to GHz frequency range. Possible ways to change the membrane's selectivity dynamically include:

- 1. Causing the edges of the pores to vibrate, which can temporarily shrink or widen the pore size.
- 2. Adjusting the structure of water layers and impurities around the pore openings.
- 3. Distinguishing between different ions by matching their movement with particular acoustic frequencies.]

3.3 Analogs from Fluid Gating and Membrane Science

Although similar ideas have been studied in liquid-gated and electrochemical membranes, as well as in acoustically adjustable "smart" non-Newtonian fluid systems, the integration of atomic-level gating with actual desalination capabilities has not yet been achieved in graphene-based systems. pubs.acs+3

IV. Key Challenges and Engineering Solutions

4.1 Efficient Acoustic Coupling Without Damage

Challenge: Atomically thin graphene is mechanically strong yet easily damaged, needing careful and efficient energy transfer.sciencedirect+1 Solution: Use multi-layer composite support structures, apply low-power SAWs, optimize coupling layers for acoustic impedance matching, and use established MEMS-scale fabrication techniques.sciencedirect

4.2 Sub-Nanometer Pore Dynamics and Defect Tolerance

Challenge: Achieving reversible and repeatable sub-nanometer changes without causing the pores to collapse or damaging the graphene lattice, while ensuring ions face a switchable barrier. pubs.acs+1 Solution: Design edges with flexible and functional chemical groups such as nitrogen, oxygen, and sulfur, optimize the amplitude and timing of acoustic fields, and employ atomistic simulations to identify safe operating conditions.pmc.ncbi.nlm.nih+1

4.3 Maintaining Flux-Selectivity Trade-Off

Challenge: Dynamic gating may lead to decreased water permeance or unexpected ion leakage. pmc.ncbi.nlm.nih+1 Solution: Use cycle-optimised actuation, dynamic feedback through conductivity, optical, or vi-brational signals, and periodically regenerate surfaces using high-intensity pulses or anti-fouling agents.pmc.ncbi.nlm.nih+1

4.4 Scale-Up and Module-Level Integration

Challenge: Achieving acoustic uniformity, membrane packaging, and manufacturability at a large- module scale presents significant difficulties.tandfonline+1 Solution: Utilizing modular spiral-wound or plate-and-frame configurations with built-in transduc- tion elements; implementing roll-to-roll membrane manufacturing for scalability; and employing distributed excitation for effective energy management.sciencedirect+1

4.5 Durability and Fouling in Dynamic Operation

Challenge: Acoustic actuation might lead to new types of fouling or cause membrane fatigue.sciencedirect Solution: Create hybrid cleaning methods, use anti-fouling top layers, perform aging and lifetime testing, and apply molecular bridges or covalent supports to improve durability.sciencedirect+1

V. Outlook and Future Prospects

Acoustic gating in graphene-based desalination is still in the early stages of development, but it has gained momentum thanks to recent progress in nano acoustics, dynamic gating techniques, and improvements in membrane system design.

Key areas that need immediate attention in- clude:nature+3 Creating working prototypes of graphene devices that use acoustic gating. Performing detailed measurements using high-resolution tools like atomic force microscopy, Raman spectroscopy, and electrical conductance to study how dynamic gating works in real time. Using computer simulations and models to understand how ions and molecules move through the material when exposed to sound waves. sciencedirect+1 Conducting small-scale tests of full systems and assessing their long-term performance and envi- ronmental impact. tandfonline+1 The potential impact of this technology could be huge. By using dynamic acoustic gating, desalination plants could become more flexible, adapting to different water sources or purification needs. This approach could also be used in medical settings to filter out specific ions or molecules, making the process more efficient and inspired by natural biological systems. sciencedirect+2

VI. Conclusions

- 1. Nanoporous graphene membranes, although already offering high water flow rates and effective salt removal, have not yet achieved the ability to be controlled and adjusted in real-time under field conditions.
- 2.Acoustic gating offers a practical physical method for achieving dynamic selectivity at the atomic level, especially when the interface between the acoustic system and the membrane, as well as the chemical properties of the membrane, are carefully engineered.
- 3. Recent research benchmarks, including polarized field gating, non-Newtonian fluid gating, and anti-fouling acoustics, guide the creation of smart, adaptable water purification membranes.
- 4. Demonstrating and refining acoustic gating could bring significant advancements to the field of membrane

science

References

- [1]. Wang, Y. et al. "Efficient water desalination with graphene nanopores: A data-driven simulation approach." NPJ Comput. Mater., 2021. https://www.nature.com/
- [2]. Ge, Q. et al. "Fast Water Desalination with a Graphene-MoS Nanoporous Membrane." ACS Appl. Mater. Interfaces, 2024. https://pubs.acs.org/
- [3]. Zhang, S. et al. "Oxidation-controlled nanoporous graphene laminate membranes for water desalination." Sep. Purif. Technol., 2025. https://www.sciencedirect.com/
- [4]. Guo, L. et al. "Non-Newtonian fluid gating membranes with acoustically tunable permeability." Mater. Horiz., 2023. https://pubs.rsc.org/
- [5]. Qiu, S. et al. "Potential of nanoporous graphene and functionalized derivatives as next-generation membranes for desalination." Emerg. Mater. Res., 2023. https://www.tandfonline.com/
- [6]. Dai, Y. et al. "Graphene oxide-based membranes for water desalination: Latest developments and challenges." NPJ Clean Water, 2024. https://www.nature.com/
- [7]. Suma, A. A. et al. "Acoustically excited microstructure for on-demand fouling removal in membranes." *J. Membr. Sci.*, 2021. https://www.sciencedirect.com/
- [8]. Jin, H. et al. "Acoustics at the nanoscale (nanoacoustics): A comprehensive review." *Nano Today*, 2021. https://www.ncbi.nlm.nih.gov/pmc/
- [9]. Kim, J. H. et al. "Nanopore creation in graphene at the nanoscale for water desalination applications." ACS Omega, 2025. https://pubs.acs.org/
- [10]. Zhang, Y. et al. "Electrochemically mediated gating membrane with tunable microporosity."
- [11]. PNAS, 2020. https://www.ncbi.nlm.nih.gov/pmc/
- [12]. Shen, J. et al. "Recent advances in graphene-based nano-membranes for water desalination and purification." *Chem. Eng. J. Adv.*, 2024. https://www.sciencedirect.com/
- [13]. Ruiz-Tories, C. A. et al. "Graphene-based membranes for water desalination." *Membranes*, 2022 https://www.ncbi.nlm.nih.gov/pmc/
- [14]. Sivaraman, B. et al. "Design of porous membranes by liquid gating technology." Accounts Mater. Res., 2021. https://pubs.acs.org/
- [15]. https://pubs.acs.org/doi/10.1021/acsami.4c01960
- [16]. https://www.nature.com/articles/s41699-021-00246-9
- [17]. https://pubs.rsc.org/en/content/articlelanding/2023/mh/d2mh01182d
- [18]. https://www.tandfonline.com/doi/full/10.1080/20550324.2024.2335690
- [19]. https://www.nature.com/articles/s41699-024-00462-z
- [20]. https://www.sciencedirect.com/science/article/abs/pii/S138589472400593X
- [21]. https://www.sciencedirect.com/science/article/pii/S277242122100012X
- [22]. https://pmc.ncbi.nlm.nih.gov/articles/PMC9571434/
- [23]. https://pmc.ncbi.nlm.nih.gov/articles/PMC7567586/
- [24]. https://www.sciencedirect.com/science/article/pii/S2590238521006172
- [25]. https://www.sciencedirect.com/science/article/pii/S2468025723000560
- [26]. https://pmc.ncbi.nlm.nih.gov/articles/PMC8691753/
- [27]. https://pmc.ncbi.nlm.nih.gov/articles/PMC5668689/
- [28]. https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202403463
- [29]. https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2023.127
- [30]. https://pubs.acs.org/doi/10.1021/acsomega.4c08852
- [31]. https://www.sciencedirect.com/science/article/abs/pii/S0376738825008282
- [32]. https://pubs.acs.org/doi/10.1021/accountsmr.1c00024
- [33]. https://wyss.harvard.edu/technology/liquid-gated-membranes-for-filtration/
- [34]. https://www.sciencedirect.com/science/article/abs/pii/S0013935122021120